The Dilation Coefficient of Complete Graphs

نویسندگان

  • Boris Horvat
  • Tomaž Pisanski
  • Arjana Žitnik
چکیده

The dilation coefficient of a graph representation is defined as the quotient of the longest and the shortest edge representation. The minimum of the dilation coefficients over all planar representations of a graph G is called the dilation coefficient of the graph G. The dilation coefficient of different planar representations of complete graphs is considered and upper and lower bounds for the dilation coefficients of complete graphs are given. Two iterative graph-drawing algorithms that try to minimize the dilation coefficient of a given graph are given. The calculated upper bounds for the dilation coefficients of complete graphs are compared to the values obtained by the graph-drawing algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Complete Binary Trees into Star Networks

Abs t rac t . Star networks have been proposed as a possible interconnection network for massively parallel computers. In this paper we investigate embeddings of complete binary trees into star networks. Let G and H be two networks represented by simple undirected graphs. An embedding of G into H is an injective mapping f from the vertices of G into the vertices of H. The dilation of the embedd...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

Some Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs

In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.

متن کامل

The automorphism group of the reduced complete-empty $X-$join of graphs

Suppose $X$ is a simple graph. The $X-$join $Gamma$ of a set ofcomplete or empty graphs ${X_x }_{x in V(X)}$ is a simple graph with the following vertex and edge sets:begin{eqnarray*}V(Gamma) &=& {(x,y) | x in V(X) & y inV(X_x) },\ E(Gamma) &=& {(x,y)(x^prime,y^prime) | xx^prime in E(X) or else x = x^prime & yy^prime in E(X_x)}.end{eqnarray*}The $X-$join graph $Gamma$ is said to be re...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009